Download or view ArbitraryPrecision.frink in plain text format
/** Functions for performing calculations to arbitrary precision.
A good reference is Ronald W. Potter,
"Arbitrary Precision Calculation of Selected Higher
Functions." References to "Potter" and equation numbers are from this book.
https://www.lulu.com/shop/ronald-w-potter/arbitrary-precision-calculation-of-selected-higher-functions/paperback/product-1nwy7p7q.html?q=potter+functions&page=1&pageSize=4
Also see Henrik Vestermark's excellent site which is a treasure trove:
http://www.hvks.com/
especially
http://www.hvks.com/Numerical/papers.html
*/
use pi2.frink
/** This is a new arbitrary precision exponentiation function with a binary
splitting implementation. It is orders of magnitude faster than the
previous implementation.
http://www.hvks.com/
especially
http://www.hvks.com/Numerical/papers.html
http://www.hvks.com/Numerical/arbitrary_precision.html
and specifically outlined in the paper:
http://www.hvks.com/Numerical/Downloads/HVE%20Fast%20Exp()%20calculation%20for%20arbitrary%20precision.pdf
*/
arbitraryExp[x, digits=getPrecision[], debug=false] :=
{
if x == 0
return 1
origPrec = getPrecision[]
try
{
setPrecision[18]
prec = digits + 2 + ceil[log[digits]]
c1 = 1
c2 = 2
v = x
xp = 1
// e^-x == 1/e^x
if realSignum[v] == -1
v = negate[v]
// Automatically calculate optimal reduction factor as a power of two
r = 8 * ceil[ln[2] * ln[prec]]
rexp = floor[log[v,2]]
r = r + rexp + 1 // r += v.exponent() + 1
r = max[0, r]
// Adjust the precision
// println["rexp is $rexp"]
prec = prec + floor[log[digits]] * r
// println["Final precision is $prec"]
// Calculate needed Taylor terms
k = xstirlingApprox[prec, -(r-rexp)]
if k < 2
k = 2 // Minimum 2 terms otherwise it can't split
setPrecision[prec+1]
// println["r is $r"]
// println["v was $v"]
v = v * 2^-r //v.adjustExponent(-r);
// println["v is now $v"]
[xp, p, q] = binarySplittingExp[v, 1, 0, k]
// println["Out of binary splitting."]
// println["xp=$xp"]
// println["p=$p"]
// println["q=$q"]
// Adjust and calculate exp[x]
pp = q
p = p + pp
p = p / q
p = 1. p
// println["Before adjust, p = $p"]
// Reverse argument reduction
// Brent enhancement avoids loss of significant digits when x is small.
if r > 0
{
p = p - 1
while r > 0
{
p = p * (p+2)
r = r - 1
}
p = p + 1
}
if realSignum[x] == -1
p = 1/p
setPrecision[digits]
return 1. p
}
finally
{
setPrecision[origPrec]
}
}
/** Performs a step of binarySplitting and returns [xp, p, q]
This is based on Henrik Vestermark's algorithm,
http://www.hvks.com/
especially
http://www.hvks.com/Numerical/papers.html
http://www.hvks.com/Numerical/arbitrary_precision.html
and specifically outlined in the paper:
http://www.hvks.com/Numerical/Downloads/HVE%20Fast%20Exp()%20calculation%20for%20arbitrary%20precision.pdf
*/
binarySplittingExp[x, xp, a, b] :=
{
// println["In binarySplittingExp a = $a b=$b"]
diff = b-a
if diff == 1
{
p = xp * x
return [p, p, b]
}
if diff == 2
{
xp = xp * x
p = (x+b) xp
xp = xp * x
q = b (b-1)
return [xp, p, q]
}
mid = (a+b) div 2
[xp, p, q] = binarySplittingExp[x, xp, a, mid] // Interval a...mid
[xp, pp, qq] = binarySplittingExp[x, xp, mid, b] // Interval a...mid
return [xp, p*qq + pp, q * qq]
}
/** Stirling approximation helper function for calculating e^x. */
xstirlingApprox[digits, xexpo] :=
{
// println["xexpo is $xexpo"]
test = (digits + 1) * ln[10]
// x^n/k!<10^-p, where p is the precision of the number
// x^n~2^x’exponent
// Stirling approximation of k!~Sqrt(2*pi*k)(k/e)^k.
// Taking ln on both sides you get:
//
// -k*log(2^xexpo) + k*(log((k)-1)+0.5*log(2*pi*m)=test=>
// -k*xexpo*log(2) + k*(log((k)-1)+0.5*log(2*pi*m)=test
// Use the Newton method to find in less than 4-5 iteration
xold = 5
xnew = 0
NEWTONLOOP:
while true
{
f = -xold * ln[2] * xexpo + xold * (ln[xold]-1) + 0.5 ln[2 pi xold]
// println["f is $f"]
f1 = 0.5 / xold + ln[xold] - xexpo * ln[2]
xnew = xold - (f - test) / f1
if ceil[xnew] == ceil[xold]
break NEWTONLOOP
xold = xnew
}
// println["xStirlingApprox returning " + ceil[xnew]]
return ceil[xnew]
}
/** Natural log to arbitrary precision. This uses a cubic convergence
algorithm (that is, the number of correct digits in the result
approximately triple with each iteration) with adaptive precision using
equation 3.47 in Potter. It is significantly faster than the previous
algorithm that did not have adaptive precision and used a quadratic
Newton's method algorithm.
*/
arbitraryLn[x, digits=getPrecision[], debug=false] :=
{
if debug
println["in arbitraryLn[$x]"]
if x <= 0
return "Error: Arbitrary logs of negative numbers not yet implemented."
if x == 1
return 0
extraDigits = 5 + digitLength[x]
origPrec = getPrecision[]
try
{
setPrecision[10]
eps = 10.^-(digits+1)
// A good initial estimate is needed.
if (x > 0.999) and (x < 1.001)
{
// Use Taylor series around 1 because Math.log returns such a bad
// value.
y = arbitraryLnTaylor[x, digits*2, debug]
prec = 15
} else
{
if (x < 10^290) and (x > 10^-308) // If within the range of a double
{
y = ln[x]
prec = 15
} else // TODO: Store ln[2] somewhere.
{
y = approxLog2[x] * ln[2]
prec = 1 // Is this reasonable? approxLog2 has a lot of latitude.
}
}
if debug
println["Epsilon is $eps"]
// Use Newton's method
do
{
setPrecision[max[prec,15]+extraDigits]
y2 = y
if debug
println["About to do arbitraryExp[" + (-y) + "]"]
le = arbitraryExp[-y, max[prec,15]+extraDigits, debug]
if debug
println["Out of arbitraryExp, value is $le"]
zn = 1 - x le
y = y - zn(1 + zn/2)
if debug
println["prec is $prec, y is $y"]
prec = prec * 3
if (prec > digits + extraDigits)
prec = digits + extraDigits
} while (prec < digits) or (abs[y2-y] > eps)
setPrecision[digits]
retval = 1. y
if debug
println["arbitraryLn about to return $retval"]
return retval
}
finally
setPrecision[origPrec]
}
/** This is an arbitrary-precision natural logarithm that uses a Taylor series
for arctanh. It is theoretically valid for any real number x>0 but should
probably only be used closely around x=1 where the binary splitting version
does not converge well. This is probably because the IEEE-754 unit
returns a poor value for ln(x) around x=1?! For example,
log(1.000001) gives, with IEEE_754, 9.999994999180668e-07
whereas the actual value is 9.99999500000333333083333533333e-07
The expression is:
ln[x] = 2 arctanh(r) = 2 (r + 1/3 r^3 + 1/5 r^5 + 1/7 r^7 ...)
where
r = (x-1)/(x+1)
See:
http://www.hvks.com/Numerical/Downloads/HVE%20Fast%20Log()%20calculation%20for%20arbitrary%20precision.pdf
*/
arbitraryLnTaylor[x, digits=getPrecision[], debug=false] :=
{
terms = 10
origPrec = getPrecision[]
workingPrecision = digits + 2
try
{
setPrecision[workingPrecision]
z = (x-1)/(x+1)
z2 = z*z
term = z
sum = z
denom = 3
for i = 1 to terms
{
term = term * z2
sum = sum + term/denom
denom = denom+2
}
setPrecision[digits]
return 2. sum
}
finally
{
setPrecision[origPrec]
}
}
// Arbitrary-precision power x^p
// This uses the relationship that x^p = exp[p * ln[x]]
arbitraryPow[x, p, digits = getPrecision[], debug=false ] :=
{
// TODO: Make this work much faster for integer and rational powers.
prec = getPrecision[]
try
{
workingdigits = digits + 2
if digits <= 12
workingdigits = digits + 4
setPrecision[workingdigits]
ret = arbitraryExp[p * arbitraryLn[x, workingdigits, debug],
workingdigits, debug]
setPrecision[digits]
return 1. * ret
}
finally
setPrecision[prec]
}
// Arbitrary log to the base 10.
arbitraryLog[x, digits=getPrecision[], debug=false] :=
{
origPrec = getPrecision[]
try
{
setPrecision[digits+2]
// TODO: Store ln[10] somewhere.
retval = arbitraryLn[x, digits+2,debug] / arbitraryLn[10, digits+2, debug]
setPrecision[digits]
return 1. retval
}
finally
setPrecision[origPrec]
}
// Arbitrary log to the specified base.
arbitraryLogBase[x, base, digits=getPrecision[], debug=false] :=
{
origPrec = getPrecision[]
try
{
setPrecision[digits+2]
retval = arbitraryLn[x, digits+2,debug] / arbitraryLn[base, digits+2, debug]
setPrecision[digits]
return 1. retval
}
finally
setPrecision[origPrec]
}
// This method computes sine of a number to an arbitrary precision.
// This method is actually a dispatcher function which conditions the values
// and tries to dispatch to the appropriate method which will be most likely
// to converge rapidly.
arbitrarySin[x, digits=getPrecision[], debug=false] :=
{
origPrec = getPrecision[]
try
{
// If x is something like 10^50, we actually need to work with
// 50+digits at this point to get a meaningful result.
extradigits = max[0, ceil[approxLog2[abs[x]]/ 3.219]] // Approx. log 10
if debug
println["Extradigits is " + extradigits]
setPrecision[digits+extradigits+4]
if debug
println["Dividing by pi to " + (digits + extradigits + 4) + " digits"]
pi = Pi.getPi[digits+extradigits+4]
// Break up one period of a sinewave into octants, each with width pi/4
octant = floor[(x / (pi/4)) mod 8]
// Adjust x into [0, 2 pi]
x = x mod (2 pi)
if debug
println["Octant is $octant"]
if debug
println["Adjusted value is $x"]
if octant == 0
val = arbitrarySinTaylor[x, digits]
else
if octant == 1
val = arbitraryCosTaylor[-(x - pi/2), digits]
else
if octant == 2
val = arbitraryCosTaylor[x - pi/2, digits]
else
if octant == 3 or octant == 4
val = -arbitrarySinTaylor[x-pi, digits]
else
if octant == 5
val = -arbitraryCosTaylor[-(x - 3/2 pi), digits]
else
if octant == 6
val = -arbitraryCosTaylor[x - 3/2 pi, digits]
else
val = arbitrarySinTaylor[x - 2 pi, digits]
setPrecision[digits]
return 1. * val
}
finally
setPrecision[origPrec]
}
/* This method computes cosine of a number to an arbitrary precision.
This method actually just calls arbitrarySin[x + pi/2]
*/
arbitraryCos[x, digits=getPrecision[]] :=
{
origPrec = getPrecision[]
// If x is something like 10^50, we actually need to work with
// 50+digits at this point to get a meaningful result.
extradigits = max[0, ceil[approxLog2[abs[x]]/ 3.219]] // Approx. log 10
if debug
println["Extradigits is " + extradigits]
if debug
println["Dividing by pi to " + (digits + extradigits + 4) + " digits"]
pi = Pi.getPi[digits+extradigits+4]
try
{
setPrecision[digits+extradigits+4]
pi = Pi.getPi[digits+extradigits+4]
arg = x+pi/2
return arbitrarySin[arg, digits]
}
finally
setPrecision[origPrec]
}
// Arbitrary-precision sine
arbitrarySinTaylor[x, digits=getPrecision[], returnInterval = false] :=
{
origPrec = getPrecision[]
eps = 10.^-(digits+3)
terms = new array
try
{
setPrecision[digits+5]
x = x / radian // Factor out radians if we use them
pi = Pi.getPi[digits+5]
x = x mod (2 pi)
if x > pi
x = x - 2 pi
num = x
sum = x
term = 3
denom = 1
factor = -x*x
terms.push[sum]
do
{
prevSum = sum
num = num * factor
denom = denom * (term-1) * term
part = num/denom
sum = sum + part
term = term + 2
terms.push[part]
} while prevSum != sum
// println["terms for sin is $term"]
sum = sum[reverse[terms]]
setPrecision[digits]
return 1. * sum
}
finally
setPrecision[origPrec]
}
// Cosine for arbitrary digits. We could write this in terms of the sine
// function (cos[x] = sin[x + pi/2]) but it's faster and more accurate
// (especially around pi/2) to write it as the Taylor series expansion.
arbitraryCosTaylor[x, digits=getPrecision[]] :=
{
origPrec = getPrecision[]
eps = 10.^-(digits+4)
terms = new array
try
{
setPrecision[digits+4]
x = x / radian // Factor out radians if we use them
pi = Pi.getPi[digits+4]
x = x mod (2 pi)
// println["Effective x is $x"]
num = 1
sum = 1
term = 2
denom = 1
factor = -x*x
terms.push[sum]
do
{
prevSum = sum
num = num * factor
denom = denom * (term-1) * term
part = num/denom
sum = sum + part
// println["$term $part $sum"]
term = term + 2
terms.push[part]
} while prevSum != sum
// println["terms for cos is $term"]
sum = sum[reverse[terms]]
setPrecision[digits]
return 1. * sum
}
finally
setPrecision[origPrec]
}
// Tangent for arbitrary digits. This is written in terms of
// sin[x]/cos[x] but it seems to behave badly around pi/2 where cos[x] goes to
// zero.
//
// TODO: Make this a series expansion with the tangent numbers. This might
// be more efficient.
// See: http://mathworld.wolfram.com/TangentNumber.html
// also TangentNumbers.frink
// which calculate these numbers directly and efficiently.
//
// We could also try using Newton's method to invert arctan[x] which
// has a simple series expansion,
// arctan[x] = sum[(-1)^k x^(2k+1) / (2k + 1), {k, 0, infinity}]
// but this only converges for abs[x] <= 1, x != +/- i
//
// See:
// Fast Algorithms for High-Precision Computation of Elementary Functions,
// Richard P. Brent, 2006
// https://pdfs.semanticscholar.org/bf5a/ce09214f071251bfae3a09a91100e77d7ff6.pdf
arbitraryTan[x, digits=getPrecision[], debug=false] :=
{
// If x is something like 10^50, we actually need to work with
// 50+digits at this point to get a meaningful result.
extradigits = max[0, ceil[approxLog2[abs[x]]/ 3.219]] // Approx. log 10
if debug
println["Extradigits is " + extradigits]
origPrec = getPrecision[]
try
{
setPrecision[digits+extradigits+4]
retval = arbitrarySin[x, digits+4] / arbitraryCos[x, digits+4]
setPrecision[digits]
return 1. * retval
}
finally
setPrecision[origPrec]
}
// Polylogarithm. See:
// https://en.wikipedia.org/wiki/Polylogarithm
polylog[s, z, digits = getPrecision[]] :=
{
// if x <= 0
// return "Error: Arbitrary logs of negative numbers not yet implemented."
origPrec = getPrecision[]
try
{
setPrecision[digits+3]
eps = 10.^-(digits+1)
sum = 1. * z
term = 0
k = 2
do
{
term = z^k / k^s
sum = sum + term
k = k + 1
// println[sum]
} while abs[term] > eps
setPrecision[digits]
retval = 1. sum
return retval
}
finally
setPrecision[origPrec]
}
// Binary logarithm (that is, logarithm to base 2.)
binaryLog[x, digits = getPrecision[]] :=
{
origPrec = getPrecision[]
try
{
setPrecision[digits+3]
x = 1. x
y = 0
b = .5
while x < 1
{
x = 2 x
y = y - 1
}
while x >= 2
{
x = x / 2
y = y + 1
}
setPrecision[15]
epsilon = y * 10.^-(digits+3)
setPrecision[digits+3]
println["Epsilon is $epsilon"]
do
{
x = x^2
if x >= 2
{
x = x/2
y = y + b
}
b = b/2
//println["$y $x $b"]
} while b > epsilon
setPrecision[digits]
return 1. * y
}
finally
setPrecision[origPrec]
}
// See http://en.literateprograms.org/Arbitrary-precision_elementary_mathematical_functions_(Python)
/** This is a somewhat naive implementation of e^x which has a Maclaurin
series of
exp[x] = 1 + x + x^2/2! + x^3/3! + ...
It is now done much faster with a binary splitting implementation.
See BinarySplittingExp.frink for another sample.
*/
arbitraryExpOld[x, digits=getPrecision[], debug=false] :=
{
if debug
println["in arbitraryExpOld[$x, $digits]"]
origPrec = getPrecision[]
setPrecision[digits+3]
var s
try
{
if x < 0
{
s = 1.0 / arbitraryExpOld[abs[x],digits,debug]
} else
{
xpower = 1.
ns = 0.
s = 1
n = 0.
factorial = 1.
while s != ns
{
s = ns
term = xpower / factorial
if debug
println["term is $term"]
ns = s + term
xpower = xpower * x
n = n + 1.
factorial = factorial * n
}
if debug
println["s is $s"]
}
setPrecision[digits]
retval = 1.0 s
if debug
println["arbitraryExpOld[$x, $digits] returning $retval"]
return retval
}
finally
setPrecision[origPrec]
}
/**
This calculates the gamma function. The gamma function is closely related
to the factorial, but generalizes to the real numbers.
At the integers, gamma[x] = (x-1)! or, conversely, x! = gamma[x+1]
This algorithm is based on Henrik Vestermark's algorithm for calculating
using integration by parts.
See:
http://www.hvks.com/Numerical/papers.html
and specifically:
http://www.hvks.com/Numerical/Downloads/HVE%20Fast%20Gamma,%20Beta,%20Error,%20Zeta%20function%20for%20arbitrary%20precision.pdf
*/
gamma[x, digits=getPrecision[], debug=false] :=
{
precision = digits + digitLength[x] + 8
if isInteger[x]
if x <= 0
{
println["Error: gamma function is not defined for negative integers."]
return undef
} else
return (x-1)!
// TODO: Implement half-integer case here
origPrec = getPrecision[]
try
{
setPrecision[precision]
fpip = x div 1 // Called fp2 in paper, integer part
fp = x mod 1 // Called fp in paper, fractional part
if debug
{
println["fpip is $fpip"]
println["fp is $fp"]
}
if (x < 0)
{
fpip = fpip - 1
// if T(x<0) then use Euler reflection formula T(x)=pi/(T(1-x)*sin(pi*x))
fp = gamma[1 - x]
pi = Pi.getPi[precision]
fp = fp * arbitrarySin[pi * x, precision]
fp = pi / fp
setPrecision[digits]
return 1. * fp
}
// Use the Integration by parts method
// First integral as the sum of the Taylor series exp(-u) near u==0
// integral[0,M]u^(x-1)*exp(-u)du=M^x*sum([n=0,M](-1)^n*M^n/(n+x)*n1)
// Step 1 choose M>(P+ln(P))*ln(10). Due to the alternating sign working
// precision needs to be 2P
M = ceil[(precision + ln[precision]) * ln[10]]
if debug
println["M is $M"]
// Step 2
// calculate how many shifts is needed to bring x within [1-2].
shifts = 0
if x < 1
shifts = 1 // x<1 set shifts to 1;
else
if x > 2
shifts = -floor[fpip] + 1
fp = x + shifts
// Step 3 calculate the series sum
nmax = ceil[precision * ln[10] / 0.2785]
powprec = ceil[nmax + log[M]]
fp2 = 1
fp3 = 1
sum = 0
for n = 0 to nmax
{
fp2 = fp2 * (fp + n)
sum = sum + (fp3 / fp2)
fp3 = fp3 * M
}
// Step 4 finalize the gamma value
sum = sum * arbitraryExp[-M, precision]
fp = arbitraryPow[M, fp, precision] * sum
if debug
println["shifts is $shifts"]
// Step 5 readjust for any shifted T[x]
if shifts < 0
{
fp2 = 1
while shifts < 0
{
fp2 = fp2 * (x + shifts)
shifts = shifts + 1
}
fp = fp * fp2
} else
{
if shifts > 0
{
// Max 1 shift
fp2 = x
fp = fp / fp2
}
}
setPrecision[digits]
return 1. * fp
}
finally
{
setPrecision[origPrec]
}
}
/** The beta function is closely tied to Gamma. It is defined as:
beta[a, b] = gamma[a] gamma[b] / gamma[a+b]
*/
beta[a, b, digits=getPrecision[], debug=false] :=
{
origPrecision = getPrecision[]
try
{
workingPrec = digits + 4
setPrecision[workingPrec]
beta = gamma[a, workingPrec, debug] gamma[b, workingPrec, debug] / gamma[a+b, workingPrec, debug]
setPrecision[digits]
return 1. * beta
}
finally
setPrecision[origPrecision]
}
/** Calculates the error function erf, which is widely used in statistics.
For calculating the error function erf to arbitrary precision, see:
See:
http://www.hvks.com/Numerical/papers.html
and specifically:
http://www.hvks.com/Numerical/Downloads/HVE%20Fast%20Gamma,%20Beta,%20Error,%20Zeta%20function%20for%20arbitrary%20precision.pdf
Which references:
The functions erf and erfc computed with arbitrary precision and explicit
error bounds, Journal: Information and Computation, : 2012, ISSN: 0890-5401
https://core.ac.uk/display/82728431
*/
arbitraryErf[x, digits=getPrecision[], debug=false] :=
{
if x == 0
return 0
ld = log[digits]
workprec = digits + 20 + digitLength[x] + ceil[ld]
bitprecision = ceil[(digits + ld) * log[10,2]]
extra = 9
origPrec = getPrecision[]
try
{
setPrecision[workprec]
xsq = x*x // x^2
y = 2 xsq // 2 x^2
yexpo = floor[log[y,2]]
eps = bitprecision + extra
// Compute N using low-precision arithmetic.
// N/(ex^2)*log2(N/(ex^2)) >= a, where
// a=(targetprecision+3+max(0,x.exponent())-x^2*log2(e))/)ex^2)
e1xsq = e * xsq
xexpo = floor[log[abs[x],2]]
a = (eps + max[0, xexpo] - xsq * log[e,2]) / e1xsq
if a >= 2.0
nmax = ceil[2 a e1xsq / log[a,2]]
else
if (a >= 0) // [0..2]
nmax = ceil[e1xsq * 2.0^(1/4) * 2.0^(a/2)]
else
{
// a<0
nmax = ceil[e1xsq * 2.0^a]
if nmax < 2 xsq
nmax = ceil[2 xsq]
}
eps = negate[eps]
eps = eps + min[0, xexpo- 1]
// Compute L. Optimal with L~sqrt(N)
lmax = ceil[sqrt[nmax]]
ypl = y^lmax
S = new array[[lmax+1], 0]
fpacc = 2 abs[x] * arbitraryExp[-xsq] / sqrt[Pi.getPi[workprec], workprec]
if fpacc == 0
return x.realSignum[] // Return either +1 or -1
// Need to do a least kmin loops before we can consider exiting the loop
kmin = max[y, 0.9 nmax]
i=0
KLOOP:
for k=1 to nmax
{
S@i = S@i + fpacc
i = i + 1
if i == lmax
{
i = 0
fpacc = fpacc * ypl
}
fpacc = fpacc / (2 k + 1)
if ( k >= kmin and i==0 and (floor[log[fpacc,2]] < eps - yexpo * i))
break KLOOP
}
res = S@(lmax-1)
for i = lmax-2 to 0 step -1
res = res y + S@i
if x < 0
res = negate[res]
setPrecision[digits]
return 1. res
}
finally
{
setPrecision[origPrec]
}
}
/** Arbitrary-precision erfc function. erfc[x] = 1 - erf[x] but for large x
erf[x] may be very close to 1 and lose precision. It should be much
faster to call this function for large x.
Note that this function is very limited in the number of correct digits it
can produce for smaller x. For example, at erfc[5], it can only produce
9 correct digits. It will print an error and return with an undef value if
too many digits are requested. The approximate number of achievable decimal
digits is:
exp[2 ln[x]] log[2, 10]
THINK ABOUT: Add a dispatcher function to only call this for larger values
of x.
THINK ABOUT: If we can't produce enough digits, call 1-arbitraryErf[x]
instead. Look at how statistics.frink implements its dispatchers.
This is implemented from eq. 3 and algorithm 5 of:
The functions erf and erfc computed with arbitrary precision and explicit
error bounds, Journal: Information and Computation, : 2012, ISSN: 0890-5401
https://core.ac.uk/display/82728431
In his paper
http://www.hvks.com/Numerical/Downloads/HVE%20Fast%20Gamma,%20Beta,%20Error,%20Zeta%20function%20for%20arbitrary%20precision.pdf
Vestermark recommends just using 1-arbitraryErf[x] instead.
*/
arbitraryErfc[x, digits=getPrecision[], debug=false] :=
{
if x == 0
return 0
origPrec = getPrecision[]
if x < 0
{
try
{
setPrecision[digits]
return 2-arbitraryErfc[-x, digits, debug]
}
finally
setPrecision[origPrec]
}
// Recipe 5
tprime = ceil[digits log[10,2]] // tprime is *bits* of precision, not digits
if debug
println["tprime is $tprime"]
// We can peform the pass/(no pass) criterion at lower precision
xsq1 = x^2
ex2 = e xsq1
ad = (-tprime - 3) / ex2
if ad < -log[e,2]/e
{
// Frink solver to calculate number of possibly correct digits:
// Does not always solve specified term. Fix this.
// https://frinklang.org/fsp/solve2.fsp?equations=xsq1+%3D+x%5E2%0D%0Aex2+%3D+e+xsq1%0D%0Aad+%3D+%28-tprime+-+3%29+%2F+ex2%0D%0Aad+%3D+-log%5Be%2C2%5D%2Fe%0D%0Adigits+%3D+tprime+%2F+log%5B10%2C2%5D%0D%0A&solveFor=&f=m&ev=on&sel_ad=S&val_ad=27%2F312500000000000+s&sel_digits=S&val_digits=&sel_e=L&val_e=2.71828182845904523536&sel_ex2=S&val_ex2=&sel_tprime=S&val_tprime=&sel_x=L&val_x=5.1&sel_xsq1=S&val_xsq1=&resultAs=&solved=on&showorig=on
maybeDigits = floor[(xsq1 - ln[8])/ln[10]]
println["arbitraryErfc cannot be used for x=$x and $digits digits. It may be accurate up to $maybeDigits digits for this value of x."]
return undef
}
N0 = ceil[ex2 ad / log[-ad, 2]]
if N0 <= xsq1
N = N0
else
{
n1part = xsq1/ex2
if n1part log[n1part, 2] <= ad
N = ceil[xsq1]
else
{
println["arbitraryErfc cannot be used for $x and $digits digits (final test)"]
return undef
}
}
// Recipe 6
workprec = ceil[(tprime + 9 + ceil[log[N,2]]) / log[10,2]] + digitLength[x]
if debug
println["workprec is $workprec"]
try
{
setPrecision[workprec]
E = floor[log[x,2]]
xsq = x*x // x^2
G = ceil[xsq log[e,2]]
acc = xsq
y = 1 / (2 acc)
acc = arbitraryExp[-acc, workprec]
tmp = x * sqrt[Pi.getPi[workprec], workprec]
acc = acc / tmp
F = floor[log[abs[y],2]]
if debug
println["N is $N"]
L = ceil[sqrt[N]] + 1 // Not sure from the paper what L should be!
// L = floor[xsq - 1/2]
// L = 2 N
// L = 2N-1
if debug
println["L is $L"]
z = arbitraryPow[y, L, workprec]
S = new array[[L+1], 0]
i = 0
k = 0
do
{
S@i = S@i + (-1)^k acc
k = k+1
if i == L - 1
{
i = 0
acc = acc * z
} else
i = i + 1
acc = acc * (2 k - 1)
} until k == N or floor[log[acc,2]] < -tprime - 3 - F i - G - E
// Now evaluate by Horner's rule
R = S@(L-1)
for i = L-2 to 0 step -1
R = R y + S@i
setPrecision[digits]
return 1. R
}
finally
{
setPrecision[origPrec]
}
}
/** Arbitrary-precision phi function. This is the cumulative distribution
function for the normal/Gaussian distribution with a mean of 0 and sd of 1.
Calculate the probability (from 0 to 1) of a score *less than or equal to* z
in a normally-distributed distribution with the given mean and standard
deviation.
*/
arbitraryPhi[z, digits=getPrecision[]] :=
{
origPrec = getPrecision[]
workPrec = digits + 3
try
{
setPrecision[workPrec]
phi = 1/2 (1 + arbitraryErf[z / sqrt[2, workPrec], workPrec])
setPrecision[digits]
return 1.0 phi
}
finally
{
setPrecision[origPrec]
}
}
/** Arbitrary-precision phi function. This is the cumulative distribution
function for the normal/Gaussian distribution.
Calculate the probability (from 0 to 1) of a score *less than or equal to* x
in a normally-distributed distribution with the given mean and standard
deviation.
For example, to find the percentile score of an IQ of 130, given the
assumption that IQ has mean of 100 and sd of 15, use:
arbitraryPhi[130, 100, 15]
which gives 0.977, or the 97.7th percentile.
*/
arbitraryPhi[x, mean, sd, digits=getPrecision[]] :=
{
origPrec = getPrecision[]
workPrec = digits + 3
try
{
setPrecision[workPrec]
z = (x - mean) / sd // Convert to "z-score"
phi = arbitraryPhi[z, digits]
setPrecision[digits]
return 1.0 phi
}
finally
{
setPrecision[origPrec]
}
}
"ArbitraryPrecision included OK"
/*
digits = 1
setPrecision[digits]
pi = Pi.getPi[digits]
num = pi/4
collapseIntervals[false]
inum = new interval[num, num, num]
println[arbitrarySin[num,digits]]
println[arbitrarySin[-num,digits]]
println[sin[num]]
println[sin[inum]]
println[]
println[arbitraryCos[num,digits]]
//println[arbitraryCosAround2Pi[num,digits]]
println[arbitraryCos[-num,digits]]
println[cos[num]]
println[cos[inum]]
println[]
println[arbitraryTan[num,digits]]
println[arbitraryTan[-num,digits]]
println[tan[num]]
println[tan[-num]]
println[tan[inum]]
setPrecision[2]
g = new graphics
ps = new polyline
pc = new polyline
for x=-20 pi to 20 pi step .1
{
ps.addPoint[x,-arbitrarySin[x]]
pc.addPoint[x,-arbitraryCos[x]]
}
g.add[ps]
g.color[0,0,1]
g.add[pc]
g.show[]
*/
Download or view ArbitraryPrecision.frink in plain text format
This is a program written in the programming language Frink.
For more information, view the Frink
Documentation or see More Sample Frink Programs.
Alan Eliasen was born 20199 days, 9 hours, 19 minutes ago.