Download or view navigation.frink in plain text format
// This file contains high-accuracy navigation calculations for the earth.
// Sign conventions
// It is *highly* recommended that you use these constants instead of
// assuming a sign convention.
North := +1
South := -1
West := -1
East := +1
// Turn a latitude measurement into the appropriate letter or word. (e.g.
// "N" or "S"
// Pass in the latitude and an optional flag to produce the letter
// or word. Default is letter only.
latitudeName[lat, short=true] :=
{
if lat >= 0 degrees
short ? "N" : "North"
else
short ? "S" : "South"
}
// Turn a longitude measurement into the appropriate letter or word. (e.g.
// "N" or "S"
// Pass in the longitude and an optional flag to produce the letter
// or word. Default is letter only.
longitudeName[long, short=true] :=
{
if long <= 0 degrees
short ? "W" : "West"
else
short ? "E" : "East"
}
// Calculates the initial bearing for getting from point 1
// to point 2. This corrects for the ellipsoidal shape of the earth to very
// high accuracy.
// This is based on a paper by T. Vincenty:
// "Direct and Inverse Solutions of Geodesics on the Ellipsoid with Application
// of Nested Equations", Survey Review XXII, 176, April 1975.
// http://www.ngs.noaa.gov/PUBS_LIB/inverse.pdf
// This implements the "inverse formula."
// Returns:
// [distance, initialBearing, finalBearing]
//
// TODO: Allow this to pass in a datum.
//
// TODO: Implement the version described in:
// http://link.springer.com/article/10.1007%2Fs00190-012-0578-z
// Algorithms for geodesics
/
// Charles F. F. Karney // Journal of Geodesy
/
// January 2013, Volume 87, Issue 1, pp 43-55,
earthDistanceAndBearing[lat1, long1, lat2, long2] :=
{
L = long2 - long1
if L < -180 degrees
L = L + 360 degrees
if L > 180 degrees
L = L - 360 degrees
lambda = L
if (lat1 == lat2) and (long1 == long2)
return [0 m, 0 degrees, 0 degrees] // Points are identical.
a = earthradius_equatorial
b = earthradius_polar
f = earth_flattening
// Calculate "reduced" latitudes
U1 = arctan[(1-f) tan[lat1]]
U2 = arctan[(1-f) tan[lat2]]
cU1 = cos[U1]
cU2 = cos[U2]
sU1 = sin[U1]
sU2 = sin[U2]
var slambda
var clambda
var oldlambda
var calpha2
var cos2sigmam
var sinSigma
var sinalpha
do
{
oldlambda = lambda
slambda = sin[lambda]
clambda = cos[lambda]
sinSigma = sqrt[(cU2 slambda)^2 + (cU1 sU2 - sU1 cU2 clambda)^2] // Eq.14
cossigma = sU1 sU2 + cU1 cU2 clambda // Eq. 15
tansigma = sinSigma / cossigma // Eq. 16
sinalpha = cU1 cU2 slambda / sinSigma // Eq. 17
calpha2 = 1 - sinalpha^2
if (calpha2 == 0) // Equatorial points
cos2sigmam = 0
else
cos2sigmam = cossigma - 2 sU1 sU2 / calpha2 // Eq. 18
C = f/16 calpha2 (4 + f (4-3 calpha2)) // Eq. 10
sigma = arctan[sinSigma, cossigma]
lambda = L + (1-C) f sinalpha (sigma +
C sinSigma ( cos2sigmam + C cossigma (-1 + 2 cos2sigmam^2)))
// Eq. 11
} while (abs[oldlambda - lambda] > 1e-6 arcsec and abs[lambda] < pi radians)
slambda = sin[lambda]
clambda = cos[lambda]
alpha1 = arctan[cU2 slambda, cU1 sU2 - sU1 cU2 clambda]
alpha2 = arctan[cU1 slambda, -sU1 cU2 + cU1 sU2 clambda]
u2 = calpha2 (a^2-b^2)/b^2
A = 1 + u2/16384 (4096 + u2 (-768 + u2 (320 - 175 u2))) // Eq. 3
B = u2/1024 (256 + u2 ( -128 + u2 (74 - 47 u2))) // Eq. 4
deltaSigma = B sinSigma ( cos2sigmam +
1/4 B (cos[sigma](-1 + 2 cos2sigmam^2) -
1/6 B cos2sigmam (-3 + 4 sinSigma^2)(-3+4 cos2sigmam^2)))
// Eq. 6
dist = b A (sigma - deltaSigma)
return [dist, alpha1 mod circle, alpha2 mod circle]
}
// Convenience method to just return the distance.
earthDistance[lat1, long1, lat2, long2] := earthDistanceAndBearing[lat1,long1,lat2,long2]@0
// Convenience method to just return the bearing.
earthBearing[lat1, long1, lat2, long2] := earthDistanceAndBearing[lat1,long1,lat2,long2]@1
// Given the lat/long of starting point, and traveling a specified distance,
// at an initial bearing, calculates the lat/long of the resulting location.
// This corrects for the ellipsoidal shape of the earth to very high accuracy.
// This is based on a paper by T. Vincenty:
// "Direct and Inverse Solutions of Geodesics on the Ellipsoid with Application
// of Nested Equations", Survey Review XXII, 176, April 1975.
// http://www.ngs.noaa.gov/PUBS_LIB/inverse.pdf
// This implements the "direct formula."
//
// Returns:
// [lat, long]
resultantLatLong[lat1, lon1, dist, bearing] :=
{
f = earth_flattening
// Calculate "reduced" latitude
U1 = arctan[(1-f) tan[lat1]]
cU1 = cos[U1]
sU1 = sin[U1]
a = earthradius_equatorial
b = earthradius_polar
cosalpha1 = cos[bearing]
sinalpha1 = sin[bearing]
sigma1 = arctan[tan[U1],cosalpha1] // Eq. 1
sinalpha = cU1 sinalpha1 // Eq. 2
calpha2 = 1 - sinalpha^2
u2 = calpha2 (a^2-b^2)/b^2
A = 1 + u2/16384 (4096 + u2 (-768 + u2 (320 - 175 u2))) // Eq. 3
B = u2/1024 (256 + u2 ( -128 + u2 (74 - 47 u2))) // Eq. 4
baseS = dist/(b A)
sigma = baseS
do
{
lastsigma = sigma
twoSigmam = 2 sigma1 + sigma // Eq. 5
cos2sigmam = cos[twoSigmam]
sinSigma = sin[sigma]
deltaSigma = B sinSigma ( cos2sigmam +
1/4 B (cos[sigma](-1 + 2 cos2sigmam^2) -
1/6 B cos2sigmam (-3 + 4 sinSigma^2)(-3+4 cos2sigmam^2)))
// Eq. 6
sigma = baseS + deltaSigma // Eq. 7
} while (abs[lastsigma - sigma] > 1e-6 arcsec)
sinSigma = sin[sigma]
cosSigma = cos[sigma]
twoSigmam = 2 sigma1 + sigma // Eq. 5
cos2sigmam = cos[twoSigmam]
lat2 = arctan[sU1 cosSigma + cU1 sinSigma cosalpha1,
(1-f)sqrt[sinalpha^2 + (sU1 sinSigma - cU1 cosSigma cosalpha1)^2]]
// Eq. 8
lambda = arctan[sinSigma sinalpha1, cU1 cosSigma - sU1 sinSigma cosalpha1]
//Eq.9
C = f/16 calpha2 (4 + f (4-3 calpha2)) // Eq. 10
L = lambda - (1-C) f sinalpha (sigma +
C sinSigma ( cos2sigmam + C cosSigma (-1 + 2 cos2sigmam^2)))
// TODO: Calculate final azimuth? (eq. 12)
return [lat2, lon1+L]
}
// Calculates the perimeter of a polygon on the earth. This uses great
// circle distances. The input value is an array containing
// 3 or more pairs of [lat, long] values.
earthPerimeter[polygon] :=
{
perimeter = 0 m
size = length[polygon]
for i = 0 to size-1
{
[lat1, long1] = polygon@i
[lat2, long2] = polygon@((i+1) mod size)
perimeter = perimeter + earthDistance[lat1, long1, lat2, long2]
}
return perimeter
}
// Calculates the area of a polygon on the earth. This uses great
// circle distances. The input value is an array containing
// 3 or more pairs of [lat, long] values.
earthArea[polygon, radius=earthradius] :=
{
anglesum = 0 radians
size = length[polygon]
for i = 0 to size-1
{
[lat1, long1] = polygon@i
[lat2, long2] = polygon@((i+1) mod size)
[lat3, long3] = polygon@((i+2) mod size)
angle = abs[earthBearing[lat2, long2, lat3, long3] -
earthBearing[lat2, long2, lat1, long1]]
if (angle > 180 degrees)
angle = (360 degrees) - angle
anglesum = anglesum + angle
}
return (anglesum/radians - (size-2) pi) radius^2
}
// Distance between two points on the earth. This is from the high-accuracy
// system of equations in Meeus, chapter 11. These equations are not numbered,
// but begin *after* equation 11.2.
// These correct for the non-sphericity of the earth.
// This function is deprecated and uses the wrong sign convention.
lowAccuracyEarthDistance[lat1, long1, lat2, long2] :=
{
F = (lat1 + lat2) / 2
//println["F: " + (F -> degrees)]
G = (lat1 - lat2) / 2
//println["G: " + (G -> degrees)]
lambda = (long1-long2) / 2
//println["lambda: " + (lambda -> degrees)]
S = sin[G]^2 cos[lambda]^2 + cos[F]^2 sin[lambda]^2
C = cos[G]^2 cos[lambda]^2 + sin[F]^2 sin[lambda]^2
//println["S: $S"]
//println["C: $C"]
omega = arctan[sqrt[S/C]]
//println["omega: " + (omega -> degrees)]
R = sqrt[S*C] / omega
//println["R: $R"]
D = 2 omega earthradius_equatorial
//println["D: $D"]
H1 = (3 R - 1)/(2 C)
H2 = (3 R + 1)/(2 S)
//earth_flattening = 1/298.257222
s = D (1 + earth_flattening (H1 sin[F]^2 cos[G]^2 -
H2 cos[F]^2 sin[G]^2))
return s
}
// Calculates the initial great circle bearing for getting from point 1
// to point 2. This is only uses spherical (and not ellipsoidal) geometry and
// does *not* correct for the fact that the earth is not quite a perfect
// sphere. This uses the wrong sign convention for longitude. This function
// is deprecated.
lowAccuracyEarthBearing[lat1, long1, lat2, long2] :=
{
arctan[sin[long1-long2]*cos[lat2],
cos[lat1]*sin[lat2]-sin[lat1]*cos[lat2]*cos[long1-long2]] mod circle
}
// Given the lat/long of starting point, and traveling a specified distance,
// at an initial bearing, calculates the lat/long of the resulting location.
// Equation taken from:
// http://williams.best.vwh.net/avform.htm#LL
// This does *not* correct for the fact that the earth is not quite a
// perfect sphere.
// This method is deprecated.
lowAccuracyResultantLatLong[lat1, lon1, dist, bearing, radius=earthradius] :=
{
d = dist/radius // Convert distance to radians
lat =arcsin[sin[lat1]*cos[d]+cos[lat1]*sin[d]*cos[bearing]]
dlon=arctan[sin[bearing]*sin[d]*cos[lat1], cos[d]-sin[lat1]*sin[lat]]
lon= ((lon1-dlon + pi) mod (2*pi))-pi
return [lat, lon]
}
"Ok"
Download or view navigation.frink in plain text format
This is a program written in the programming language Frink.
For more information, view the Frink
Documentation or see More Sample Frink Programs.
Alan Eliasen was born 20115 days, 13 hours, 3 minutes ago.