# WWIICache.frink

``` // Solution for the "WWII" geocache (GCYANP) // http://www.geocaching.com/seek/cache_details.aspx?guid=a94cdfa3-a467-40e2-974c-37cb57adba95 // "WAYPOINT #1 // There is a 14k+ mountain peak in CO that is named the same as the // battleship where the Japanese signed their WWII surrender to the US." // "If you stood on the summit of this mountain at 7pm UT on the day of the // Japanese surrender signing, you would observe the Sun at an altitude of // ____ degrees and at an azimuth (E of N) of ______ degrees." // // The ship will be trivial to anyone who has seen the fabulous Steven Seagal // epic "Under Siege". // // Location of the summit of the mountain  // http://www.14ers.com/php14ers/qpick.php?parmpeak=36 summitLat =DMS[38,56,50] summitLong=DMS[106,22,40] summitHeight=14067 feet // Grab in my sun/moon prediction library use sun.frink surrenderDate = #September 2, 1945 7:00 PM UT# println["Local time is " + (surrenderDate -> Mountain)] // Calculate refracted, parallax-corrected apparent position of sun. [azimuth, altitude] = refractedSunAzimuthAltitude[surrenderDate, summitLat, summitLong] // Convert Meeus' odd coordinate system to normal coordinates azimuth = (azimuth + 180 degrees) mod circle println["Altitude is: " + format[altitude, "degrees", 5]] println["Azimuth is: "  + format[azimuth,  "degrees", 5]] // Meta-Calculation: // It's hard to guess what temperature and atmospheric pressure they assumed // for the day, so use my defaults.  The calculations show that the sun // would be at an altitude of about 59 degrees (with refraction) so refraction // error should hopefully be sort of low.  Let's calculate it here. println["\nMeta-Calculation of possible refraction discrepancy:"] [airlessAz, airlessAlt] = airlessSunAzimuthAltitude[surrenderDate, summitLat, summitLong] // Convert from Meeus odd coordinate system airlessAz = (airlessAz + 180 degrees) mod circle println["Airless Altitude is: " + format[airlessAlt, "degrees", 5]] println["Airless Azimuth is: "  + format[airlessAz,  "degrees", 5]] // Calculate refraction angle using my defaults. refractionAngle = refractionAngle[airlessAlt] println[] println["Refraction angle is: " + format[refractionAngle, "degrees", 5]] println["If they didn't correct for refraction, error is " + format[refractionAngle earthradius, "feet", 1] + "."] // Running this shows that the refraction angle is small (about 0.01 degrees) // so it shouldn't be a problem if we round to the nearest degree, but it is // possibly a problem if we round to the nearest 0.1 degree, and certainly // if we round to the nearest 0.01 degree. // The problem solution doesn't state if/how they rounded the value.  This is // potentially a show-stopper. // After more research, the USNO page seems to show one decimal place // after the decimal point for altitude and azimuth.  Can we assume that's // what they were using?  It's too big of an assumption to make carelessly; // .1 degree on the earth's surface is (in Frink notation:) //       .1 degree earthradius -> miles // // that's still almost 7 miles!  Far too large an area for me to hike. // In addition, it's hard to know if they really corrected for the parallax // of the summit, as opposed to just using the reference geoid.  The problem // statement says "from the summit," so let's assume so.  Unfortunately, // my parallax model only currently calculates from the reference geoid, // so let's see how bad that might throw us off. // Based on the link they gave to the USNO, http://aa.usno.navy.mil/ , // which doesn't have inputs for altitude, I might guess that they didn't // correct parallax for the actual altitude of the summit, but rather just // used the reference geoid or even something simpler.  The USNO's notes // don't say anything about parallax or refraction, but my previous encounters // with USNO predictions show that they do have some refraction model close // to my defaults (but theirs do a crazy step-function to zero as soon as the // centerline of the sun or moon crosses the horizon.)  Hmmm...  let's // calculate the magnitude of possible error due to parallax. println["\nMeta-Calculation of possible parallax discrepancy:"] // The maximum magnitude of the parallax error would occur if the sun were // at the horizon, but since it's high, parallax is reduced. parallax = parallaxAngleAlt[sundist, airlessAlt] println["Total parallax angle is: " + format[parallax, "degrees", 5]] // Running this, the nominal parallax angle is about 0.00126 degrees, which // is small (but nonzero).  The error due to not adjusting for geodetic // elevation would be: parallaxErrorFactor = summitHeight / earthradius println["Parallax error factor is: " + format[parallaxErrorFactor, 1, 5]] println["If they didn't correct for parallax at all, error is " + format[parallax earthradius, "feet", 1] + "."] println["If they corrected for parallax for the geoid, but not for the mountain summit, error is " + format[parallax earthradius parallaxErrorFactor, "feet", 1] + "."] // So again, multiplying this is small, at least for the sun.  (It would be // significant for the moon, which is 389 times closer!) // We're still stuck by not knowing how much they rounded the alt/azimuth // figures.  Without knowing this, we might be off by as much as a degree // (about 70 miles) in lat or long! // // Clarification has been requested.  We'll see what they say. roundAlt = round[altitude, 0.1 degrees] roundAz  = round[azimuth, 0.1 degrees] println["Rounded altitude is: " + format[roundAlt, "degrees", 5]] println["Rounded azimuth is : "  + format[roundAz,  "degrees", 5]] // "Actual latitude (N) of Waypoint #1 is the Sun's altitude // minus 19.23007 degrees." W1lat = roundAlt - 19.23007 degrees // "Actual longitude (W) of Waypoint #1 is the Sun's azimuth // minus 72.63358 degrees." W1long = roundAz - 72.63358 degrees println[] println["Waypoint 1 latitude is:   " + format[W1lat, "degrees", 5]] println["Waypoint 1 longitude is: "  + format[W1long,  "degrees", 5]] // "WAYPOINT #2 // "At Waypoint #1 you will find a Rx pill bottle containing "adjusted" UTM // coordinates for WP #2 and a specific factor ________________used in // calculating the coordinates of Waypoint 2._______________ N and // _____________________ E" // Hmmm... by "unadjusted" do they mean what that usually means for UTM // coordinates, that the easting is shifted by 500000 meters and is relative // to the bounding meridians and not to the central meridian?  Or do they // mean that they're "normal" UTM coordinates and the "unadjusted" means that // they just haven't added the numbers below?  Must ask. // "WP 1 is // located in a small park named after a location where terrible events took // place during WWII. These events were memorialized by a poem set to music. A // number in the music title is used in calculating WP2 coordinates. // The UTM values found at WP1 must be adjusted as follows to obtain the // actual WP2 coordinates: println[] println["Waypoint 2"] println["a. The mountain peak elevation, in feet, " + (summitHeight->feet) + ", multiplied by 0.97588."] a2 = (summitHeight/feet) * 0.97588 println["result is \$a2"] // Do they round the Julian day?  To the nearest day, or do they use // all the digits?  Are they including the 7 PM UT in the JD calculation? // I guess it doesn't matter too much, because these are offsets to UTM // coordinates and thus just have units of meters. b2 = JD[surrenderDate] / days println["\nAdd the UT Julian date of the Japanese surrender signing: "] println[format[b2, 1, 5] + ", to result A."] b3 = a2 + b2 println["b. result is " + format[b3, 1, 5]] ```