Rump.frink

Download or view Rump.frink in plain text format


// A test of math using an equation due to Rump and refined in "Global
// Optimization Using Interval Analysis", Hansen and Walster, section
// 1.4.1
f[x,y] := (333.75 - x^2) y^6 + x^2 (11x^2 y^2 - 121 y^4 - 2) + 5.5 y^8 + x/(2y)

// This alternate version shows what happens if we don't use floating-point
// numbers but exact rational numbers.
f2[x,y] := ((333 + 3/4) - x^2) y^6 + x^2 (11x^2 y^2 - 121 y^4 - 2) + (5 + 1/2) y^8 + x/(2y)

x=77617
y=33096

// Note that the equation simplifies to:
// x / (2 y) - 2

setPrecision[38]
println["Correct answer should be:"]
println[x/(2 y)-2.]


// It appears that this doesn't work if precision is set below 37 digits,
// then it works perfectly.
println[x/(2 y)-2.]

setPrecision[20]
println["\nFloating-point: " + f[x,y]]

// Rational example:
println["\nRational:       " + f2[x,y]]

// Interval example:
collapseIntervals[false]
xi = new interval[x,x,x]
yi = new interval[y,y,y]
println["\nInterval:       " + f[xi,yi]]


// Demonstration using Frink's symbolic solver
use Solver.frink
symbolicMode[true]

// Rump equation
r = new Solver[[z === ((333 + 3/4) - x^2) y^6 + x^2 (11x^2 y^2 - 121 y^4 - 2) + (5 + 1/2) y^8 + x/(2y),
                x===77617,
                y===33096]]
println["\n\nSymbolic solution:"]
println[join["\n",r.solveAll[]]]
println[]


Download or view Rump.frink in plain text format


This is a program written in the programming language Frink.
For more information, view the Frink Documentation or see More Sample Frink Programs.

Alan Eliasen was born 20145 days, 7 hours, 27 minutes ago.