Download or view IntervalIntegrate.frink in plain text format
// This contains routines for integrating a function numerically using
// interval techniques.
// This function takes an anonymous one-argument function f and numerically
// integrates it over n steps from lower to upper. The result is an interval
// that should be guaranted to contain the true value of the function.
IntervalIntegrate[f, lower, upper, steps] :=
{
// Make sure steps is an integer or this will fail.
steps = ceil[steps]
stepsize = (upper-lower) / steps
sum = 0 f[lower] stepsize // This is necessary to get the units right.
min = lower
max = lower
// By counting for a guaranteed number of steps, we can avoid roundoff
// error and "missing" and endpoint when using floating-point boundaries.
while min < upper
{
min = max
max = min + stepsize
if (max > upper)
max = upper
width = max-min
mid = (min + max)/2
int = new interval[min, mid, max]
/* println["int: $int"]
println["f[int]: " + f[int]]
println["width: $width"]
println["sum: $sum"]*/
area = f[int] * width
// println["$int\t$area"]
sum = sum + area
}
return sum
}
// This equation tests the integration with an anonymous function and returns
// an interval.
//IntervalIntegrate[{|x| sin[x]/x}, 1e-10, 2 pi, 100000]
// This represents the light from a long cylindrical lightbulb
//IntervalIntegrate[{|h| 1000. lumens/ft / (h^2 + (12 in)^2)}, -1/2 ft, 1/2 ft, 10000] -> lumens/(foot^2)
Download or view IntervalIntegrate.frink in plain text format
This is a program written in the programming language Frink.
For more information, view the Frink
Documentation or see More Sample Frink Programs.
Alan Eliasen was born 20115 days, 14 hours, 51 minutes ago.