# eBinarySplitting.frink

``` // Program to calculate e using binary splitting.  There is now a new library // e.frink which allows resumable calculations and caching of e.  This program // contains a simpler version of the algorithm for benchmarking and testing. // // See: //    http://numbers.computation.free.fr/Constants/Algorithms/splitting.html //    http://www.ginac.de/CLN/binsplit.pdf digits = 10000 if length[ARGS] >= 1    digits = eval[ARGS@0] // Find number of terms to calculate.  ln[x!] = ln + ln + ... + ln[x] k = 1 logFactorial = 0. logMax = digits * ln while (logFactorial < logMax) {    logFactorial = logFactorial + ln[k];    k = k + 1; } setPrecision[digits+3] //println["k=\$k"] s1 = now[] start = now[] p = P[0,k] q = Q[0,k] end = now[] println["Time spent in binary splitting: " + format[end-start, "s", 3]] start = now[] e = 1 + (1. * p)/q end = now[] println["Time spent in combining operations: " + format[end-start, "s", 3]] //println[e]                      // Rational number setPrecision[digits] start = now[] e = 1. * e end = now[] println["Time spent in floating-point conversion: " + format[end-start, "s", 3]] start = now[] es = toString[e] end = now[] println["Time spent in radix conversion: " + format[end-start, "s", 3]] println[e] e1 = now[] println["Total time spent:  " + format[e1-s1, "s", 3]] println[e] P[a,b] := {    if (b-a) == 1       return 1        m = (a+b) div 2    r = P[a,m] Q[m,b] + P[m,b]    return r } Q[a,b] := {    if (b-a) == 1       return b        m = (a+b) div 2    return Q[a,m] Q[m,b] } ```

This is a program written in the programming language Frink.
For more information, view the Frink Documentation or see More Sample Frink Programs.

Alan Eliasen was born 18492 days, 22 hours, 44 minutes ago.