# Rump.frink

``` // A test of math using an equation due to Rump and refined in "Global // Optimization Using Interval Analysis", Hansen and Walster, section // 1.4.1 f[x,y] := (333.75 - x^2) y^6 + x^2 (11x^2 y^2 - 121 y^4 - 2) + 5.5 y^8 + x/(2y) // This alternate version shows what happens if we don't use floating-point // numbers but exact rational numbers. f2[x,y] := ((333 + 3/4) - x^2) y^6 + x^2 (11x^2 y^2 - 121 y^4 - 2) + (5 + 1/2) y^8 + x/(2y) x=77617 y=33096 // Note that the equation simplifies to: // x / (2 y) - 2 setPrecision println["Correct answer should be:"] println[x/(2 y)-2.] // It appears that this doesn't work if precision is set below 37 digits, // then it works perfectly. println[x/(2 y)-2.] setPrecision println["\nFloating-point: " + f[x,y]] // Rational example: println["\nRational:       " + f2[x,y]] // Interval example: collapseIntervals[false] xi = new interval[x,x,x] yi = new interval[y,y,y] println["\nInterval:       " + f[xi,yi]] // Demonstration using Frink's symbolic solver use Solver.frink symbolicMode[true] // Rump equation r = new Solver[[z === ((333 + 3/4) - x^2) y^6 + x^2 (11x^2 y^2 - 121 y^4 - 2) + (5 + 1/2) y^8 + x/(2y),                 x===77617,                 y===33096]] println["\n\nSymbolic solution:"] println[join["\n",r.solveAll[]]] println[] ```

This is a program written in the programming language Frink.
For more information, view the Frink Documentation or see More Sample Frink Programs.

Alan Eliasen was born 18369 days, 17 hours, 14 minutes ago.