# CoriolisKick.frink

``` /** This program calculates the effect of the Coriolis force on a kicked     football.  (Or any other projectile).  It models the effects of the     Coriolis force in 3 dimensions.     For the equations and coordinate system used, see:     https://en.wikipedia.org/wiki/Coriolis_effect#Rotating_sphere */ // Initial velocity components veast  = 0 m/s vnorth = 853 m/s vup    = 21 mph // Initial positions     east  = 0 yards north = 0 yards up    = 3 inches   // Initial height above ground. timestep = 0.0001 s omega = 1 revolution/day      // Rotation rate of the earth latitude = +40 degrees        // Boulder, Colorado useCoriolis = true            // Change this to see with/without Coriolis effect. t = 0 s while up > 0 mm {    t = t + timestep        // Eastward component    if useCoriolis       aeast = 2 omega (vnorth sin[latitude] - vup cos[latitude])    else       aeast = 0 m/s^2        veast = veast + aeast timestep    east = east + veast timestep        // Northward component    if useCoriolis       anorth = 2 omega (-veast sin[latitude])    else       anorth = 0 m/s^2        vnorth = vnorth + anorth timestep    north = north + vnorth timestep        // Upward component    aup = -gravity                             // Constant gravity    if useCoriolis       aup = aup + 2 omega (veast cos[latitude])  // Add coriolis effect upwards    vup = vup + aup timestep    // deltaV = a t    up  = up + vup timestep     // deltaDistance = v t    println["t: "     + format[t, "s", 3]       + "\t" +            "East: "  + format[east,"mm",3]     + "\t" +            "North: " + format[north,"yards",3] + "\t" +            "Up: "    + format[up,"yards",3]] } ```

This is a program written in the programming language Frink.
For more information, view the Frink Documentation or see More Sample Frink Programs.

Alan Eliasen was born 18492 days, 22 hours, 40 minutes ago.