Frink System Solver

(leave blank for all)
Show output as:
Unsolved: solve[ad^-1 LambertW[ad ln[2]] === ex2 x^-2 ln[2], ad]

Solution:

x = xsq1

x = - xsq1

x = ad ex2 ln [ 2 ] LambertW [ ad ln [ 2 ] ]

x = - ad ex2 ln [ 2 ] LambertW [ ad ln [ 2 ] ]

x = - ex2 e LambertW [ - 1 e ]

x = - - ex2 e LambertW [ - 1 e ]

x = - 3 ln [ 2 ] LambertW [ - 3 ln [ 2 ] ex2 - digits ln [ 10 ] ex2 ] - digits ln [ 10 ] LambertW [ - 3 ln [ 2 ] ex2 - digits ln [ 10 ] ex2 ]

x = - - 3 ln [ 2 ] LambertW [ - 3 ln [ 2 ] ex2 - digits ln [ 10 ] ex2 ] - digits ln [ 10 ] LambertW [ - 3 ln [ 2 ] ex2 - digits ln [ 10 ] ex2 ]

x = - 3 ln [ 2 ] LambertW [ - 3 ln [ 2 ] ex2 - tprime ln [ 2 ] ex2 ] - tprime ln [ 2 ] LambertW [ - 3 ln [ 2 ] ex2 - tprime ln [ 2 ] ex2 ]

x = - - 3 ln [ 2 ] LambertW [ - 3 ln [ 2 ] ex2 - tprime ln [ 2 ] ex2 ] - tprime ln [ 2 ] LambertW [ - 3 ln [ 2 ] ex2 - tprime ln [ 2 ] ex2 ]

x = - 3 ln [ 2 ] LambertW [ ad ln [ 2 ] ] - digits ln [ 10 ] LambertW [ ad ln [ 2 ] ]

x = - - 3 ln [ 2 ] LambertW [ ad ln [ 2 ] ] - digits ln [ 10 ] LambertW [ ad ln [ 2 ] ]

x = 3 ad e ln [ 2 ] 2 LambertW [ ad ln [ 2 ] ] + ad digits e ln [ 2 ] ln [ 10 ] LambertW [ ad ln [ 2 ] ]

x = - 3 ad e ln [ 2 ] 2 LambertW [ ad ln [ 2 ] ] + ad digits e ln [ 2 ] ln [ 10 ] LambertW [ ad ln [ 2 ] ]

x = - 3 ln [ 2 ] LambertW [ ad ln [ 2 ] ] - tprime ln [ 2 ] LambertW [ ad ln [ 2 ] ]

x = - - 3 ln [ 2 ] LambertW [ ad ln [ 2 ] ] - tprime ln [ 2 ] LambertW [ ad ln [ 2 ] ]

tprime = digits ln [ 10 ] ln [ 2 ]

tprime = - 3 - ad ex2

tprime = - 3 + ex2 e ln [ 2 ]

tprime = - 3 - x 2 LambertW [ ad ln [ 2 ] ] ln [ 2 ]

tprime = - 3 - xsq1 LambertW [ ad ln [ 2 ] ] ln [ 2 ]

ex2 = x 2 LambertW [ ad ln [ 2 ] ] ad ln [ 2 ]

ex2 = - 3 ad - digits ln [ 10 ] ad ln [ 2 ]

ex2 = - e x 2 LambertW [ - 1 e ]

ex2 = xsq1 LambertW [ ad ln [ 2 ] ] ad ln [ 2 ]

ex2 = 3 e ln [ 2 ] + digits e ln [ 10 ]

ex2 = - 3 ad - tprime ad

xsq1 = x 2

xsq1 = ad ex2 ln [ 2 ] LambertW [ ad ln [ 2 ] ]

xsq1 = - ex2 e LambertW [ - 1 e ]

xsq1 = - 3 ln [ 2 ] LambertW [ - 3 ln [ 2 ] ex2 - digits ln [ 10 ] ex2 ] - digits ln [ 10 ] LambertW [ - 3 ln [ 2 ] ex2 - digits ln [ 10 ] ex2 ]

xsq1 = - 3 ln [ 2 ] LambertW [ - 3 ln [ 2 ] ex2 - tprime ln [ 2 ] ex2 ] - tprime ln [ 2 ] LambertW [ - 3 ln [ 2 ] ex2 - tprime ln [ 2 ] ex2 ]

xsq1 = - 3 ln [ 2 ] LambertW [ ad ln [ 2 ] ] - digits ln [ 10 ] LambertW [ ad ln [ 2 ] ]

xsq1 = - 3 ln [ 2 ] LambertW [ ad ln [ 2 ] ] - tprime ln [ 2 ] LambertW [ ad ln [ 2 ] ]

ad = - 1 e ln [ 2 ]

solve [ LambertW [ ad ln [ 2 ] ] ad === ex2 ln [ 2 ] x 2 , ad ]

ad = - 3 ex2 - digits ln [ 10 ] ex2 ln [ 2 ]

solve [ LambertW [ ad ln [ 2 ] ] ad === ex2 ln [ 2 ] xsq1 , ad ]

ad = - 3 ex2 - tprime ex2

digits = tprime ln [ 2 ] ln [ 10 ]

digits = - 3 ln [ 2 ] ln [ 10 ] - ad ex2 ln [ 2 ] ln [ 10 ]

digits = ex2 e ln [ 10 ] - 3 ln [ 2 ] ln [ 10 ]

digits = - x 2 LambertW [ ad ln [ 2 ] ] ln [ 10 ] - 3 ln [ 2 ] ln [ 10 ]

digits = - xsq1 LambertW [ ad ln [ 2 ] ] ln [ 10 ] - 3 ln [ 2 ] ln [ 10 ]

e = LambertW [ ad ln [ 2 ] ] ad ln [ 2 ]

e = LambertW1 [ ad ln [ 2 ] ] ad ln [ 2 ]

e = LambertW [ - 3 ln [ 2 ] ex2 - digits ln [ 10 ] ex2 ] ln [ 2 ] ( - 3 ex2 - digits ln [ 10 ] ex2 ln [ 2 ] )

e = LambertW1 [ - 3 ln [ 2 ] ex2 - digits ln [ 10 ] ex2 ] ln [ 2 ] ( - 3 ex2 - digits ln [ 10 ] ex2 ln [ 2 ] )

e = LambertW [ - 3 ln [ 2 ] ex2 - tprime ln [ 2 ] ex2 ] ( - 3 ex2 - tprime ex2 ) ln [ 2 ]

e = LambertW1 [ - 3 ln [ 2 ] ex2 - tprime ln [ 2 ] ex2 ] ( - 3 ex2 - tprime ex2 ) ln [ 2 ]


Evaluated result:

SymSymbolic?Value
ad =
digits =
e =
ex2 =
tprime =
x =
xsq1 =

(Optional) Show result in units:




xsq1 = x 2
     = 26.01

ad = - 1 e ln [ 2 ]
   = - 0.36787944117144232159 ln [ 2 ]
   = - 0.53073784542304299574

48 items suppressed because of above options.


Open new blank solver

View source of this FSP page or the transformation rules that solve these equations.

Alan Eliasen, eliasen@mindspring.com

Back to Frink Server Pages documentation.